# Molecular Polarisability. The Conformations of Some Substituted Pentafluorobenzenes 

By Manuel J. Aroney,* Mrs. Georgina Cleaver, and Raymond K. Pierens, School of Chemistry, University of Sydney, Sydney, N.S.W., Australia<br>Raymond J. W. Le Fèvre, School of Chemistry, Macquarie University, North Ryde, N.S.W., Australia

Electric dipole moments and molar Kerr constants are reported for molecules $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}$ ( R is $\mathrm{CH}_{3}, \mathrm{OH}, \mathrm{NH}, \mathrm{CHO}$, $\mathrm{COCH}_{3}, \mathrm{OCH}_{3}, \mathrm{SCH}_{3}$, or $\mathrm{CH}_{2} \mathrm{CN}$ ), examined as solutes in cyclohexane at $25^{\circ}$. The experimental data are analysed to deduce the preferred solution state conformations.

This paper is concerned with the application of considerations of polarity and polarisability to determining the preferred solution state conformations of the fluoroaromatic compounds $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}\left(\mathrm{R}=\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{CHO}\right.$, $\mathrm{COCH}_{3}, \mathrm{OCH}_{3}, \mathrm{SCH}_{3}$, or $\mathrm{CH}_{2} \mathrm{CN}$ ). The degree of deflection of the groups R from the resonance favoured 'planar ' form is determined and comparison is made in each case with the corresponding $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{R}$ compounds.

## EXPERIMENTAL

Materials, Apparatus, etc.-The solutes were commercial samples which were purified immediately before use; their purity was checked by g.l.c. Cyclohexane was fractionated and stored over sodium wire. The apparatus, techniques, symbols used, and methods of calculation have been
${ }^{1}$ R. J. W. Le Fèvre and D. J. Millar, Chem. and Ind., 1971 399.
${ }^{2}$ R. J. W. Le Fèvre and G. L. D. Ritchie, J. Chem. Soc., 1963, 4933.
described before. ${ }^{1-3}$ The experimental results are summarised in Table l. The dipole moments ( $\mu$ ) and molar Kerr constants ( ${ }_{\mathrm{m}} K$ ) are expressed in S.I. units throughout. The conversion factors from the electrostatic (c.g.s., e.s.u.) system are respectively: $1 \mathrm{C} \mathrm{m}=0.2998 \times 10^{30} \mathrm{D}, 1 \mathrm{~m}^{5}$ $\mathrm{V}^{-2} \mathrm{~mol}^{-1}=0.8988 \times 10^{15}$ e.s.u. $\mathrm{mol}^{-1}$.

## DISCUSSION

Our procedure is to choose suitable molecule-fixed orthogonal axes, $x, y, z$ and to specify the molecular polarisability tensor for a particular structure by transforming the known bond and group polarisability components into this axis system. ${ }^{4}$ The polarisability parameters used in the calculations are shown in Table 2. For all molecules studied, refractivity exaltations $\Delta R_{\mathrm{D}}$, estimated as $R_{\mathrm{D}}$ (observed) $-R_{\mathrm{D}}$ (calculated by addi-

[^0]tivity of the refractivities ${ }^{5,12-14}$ of the component bonds and groups of Table 2) were zero or near zero except for pentafluorobenzaldehyde which had $\Delta R_{\mathrm{D}} 1.0 \mathrm{~cm}^{3}$, and hence a polarisability correction $\Delta b_{x x}$ of 1.3 (polarisabilities are expressed throughout as $10^{40} b / \mathrm{C} \mathrm{m}^{2} \mathrm{~V}^{-1}$ ).
$10^{-27}$ in very good agreement with the experimental value of $196 \times 10^{-27}$.

Conformations of Molecules $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}\left(\mathrm{R}=\mathrm{OH}, \mathrm{NH}_{2}\right.$, $\left.\mathrm{CHO}, \quad \mathrm{COCH}_{3}, \quad \mathrm{OCH}_{3}, \quad \mathrm{SCH}_{3}, \quad \mathrm{CH}_{2} \mathrm{CN}\right)$.-For each molecule $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}$ molar Kerr constants were calculated

Table 1
Molar polarisations and refractions, dipole moments, and molar Kerr constants (from observations on cyclohexane solutions at $25^{\circ}$ )

| solutions at $25^{\circ}$ ) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Solute | Concentration range $10^{5} w_{2}$ | $\alpha \varepsilon_{1}{ }^{*}$ | $\beta^{*}$ | $\gamma^{*}$ | $\delta^{*}$ | $\infty P_{2} / \mathrm{cm}^{3}$ | $R_{\mathrm{D}} / \mathrm{cm}^{3}$ | $\begin{aligned} & 10^{30} \mu / \\ & \mathrm{Cm} \dagger \end{aligned}$ | $\begin{aligned} & 10^{27} \infty\left(\mathrm{~m} K_{2}\right) / \\ & \mathrm{m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1} \ddagger \end{aligned}$ |
| Pentafluorotoluene | 882-2 272 | 1.81 | 0.416 | -0.029 | 72.2 | 114.1 | 29.9 | 6.70 | 196 |
| Pentafluorophenol | 634-3 284 | 2.05 | 0.488 | -0.022 | 68.1 | 121.3 | 27.0 | 7.11 | 186 |
| Pentafluoroaniline | $1018-4521$ | 4.02 | 0.478 | -0.004 | 156 | 207.8 | 30.7 | 9.77 | 423 |
| Pentafluorobenzaldehyde | 999-5 104 | 1.36 | 0.478 | $-0.009$ | 35.5 | 97.5 | 32.0 | 5.90 | 103 |
| Pentafluoroacetophenone | $1330-4809$ | 2.30 | 0.445 | -0.014 | $-35.6$ | 154.3 | 35.5 | 7.97 | -113 |
| Pentafluoroanisole | 1042 -4639 | 2.18 | 0.445 | -0.020 | 42.3 | 139.6 | 32.3 | 7.57 | 124 |
| Pentafluorothioanisole | 439-2614 | 1.63 | 0.443 | 0 | 35.2 | 122.8 | 39.3 | 6.67 | 112 |
| Pentafluorobenzyl cyanide | 698-3 093 | 4.06 | 0.453 | -0.016 | -114 | 238.7 | 34.1 | 10.5 | $-357$ |

* Incremental changes in the relative permittivities, densities, refractive indices, and Kerr constants ( $\Delta \varepsilon, \Delta d, \Delta n$, and $\Delta B$, respectively) were measured for solutions having solute weight fractions $w_{2}$. The coefficients, $\alpha \varepsilon_{1}, \beta, \gamma$, and $\delta$ were derived from the relations: $\alpha \varepsilon_{1}=\Sigma \Delta \varepsilon / \Sigma w_{2} ; \quad \beta=\Sigma \Delta d / d_{1} \Sigma w_{2} ; \gamma=\Sigma \Delta n / n_{1} \Sigma w_{2} ; \delta=\Sigma \Delta B / B_{1} \Sigma w_{2} . \quad \dagger$ Calculated on the basis that ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$. $\ddagger$ The term $\infty\left({ }_{\mathrm{m}} K_{2}\right)$ refers to the solute molar Kerr constant at infinite dilution.

The molar Kerr constant predicted for each geometric form of a molecule was calculated ${ }^{4}$ by substitution of the elements of the molecular polarisability matrix $b_{x x}, b_{y y}$, etc. into the Langevin-Born equations (1)-(3) together with $\mu_{x}, \mu_{y}$, and $\mu_{z}$, the resolved parts of the permanent molecular dipole moment vector along $x, y$, and $z$ respectively; the ratio ${ }_{\mathrm{D}} P:_{\mathrm{E}} P$, i.e. distortion polarisation: electron polarisation, was taken as 1.1 throughout.

$$
\begin{gather*}
\mathrm{m} K=\mathrm{N}\left(\theta_{1}+\theta_{2}\right) / 18 \epsilon_{0}  \tag{l}\\
\theta_{1}={ }_{\mathrm{D}} P\left[\left(b_{x x}-b_{y y}\right)^{2}+\left(b_{y y}-b_{z z}\right)^{2}+\right. \\
\left.\left(b_{z z}-b_{x x}\right)^{2}+6\left(b_{x y}^{2}+b_{x z}^{2}+b_{y z}{ }^{2}\right)\right] / 45 k T_{\mathrm{E}} P  \tag{2}\\
\theta_{\mathbf{2}}=\left[\mu_{x}{ }^{2}\left(2 b_{x x}-b_{y y}-b_{z z}\right)+\mu_{y}^{2}\left(2 b_{y y}-b_{x x}-b_{z z}\right)+\right. \\
\mu_{z}^{2}\left(2 b_{z z}-b_{x x}-b_{y y}\right)+ \\
\left.6\left(b_{x y} \mu_{x} \mu_{y}+b_{x z} \mu_{x} \mu_{z}+b_{y z} \mu_{y} \mu_{z}\right)\right] / 45 k^{2} T^{2} \tag{3}
\end{gather*}
$$

N is Avogadro's number; $\varepsilon_{0}$ is the permittivity of a vacuum.
Pentafluorotoluene.-The polarisability parameters for the pentafluorophenyl group were tested with pentafluorotoluene which, for our purposes, is conformationally unambiguous. The polarisability semi-axes calculated from $b_{\mathrm{i}}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ and $b_{\mathrm{i}}\left(\mathrm{C}_{\mathrm{ar}}-\mathrm{CH}_{3}\right)$ are $b_{x x}=15.44, b_{y y}=$ 14.66, and $b_{z 2}=8.45$ where $x$ lies along the $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}$ bond axis and $z$ is perpendicular to the aromatic ring plane. The off-diagonal elements are zero. We have also $\mu_{x}=6.70, \mu_{y}=\mu_{z}=0$. Substitution into equations (1)-(3) leads to a theoretical ${ }_{m} K\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{CH}_{3}\right)$ of $194 \times$
${ }^{5}$ M. J. Aroney, G. Cleaver, R. K. Pierens, and R. J. W. Le Fèvre, J.C.S. Perkin II, 1974, 3.
${ }^{6}$ M. J. Aroney, K. E. Calderbank, R. J. W. Le Fèvre, and R. K. Pierens, J. Chem. Soc. (B), 1969, 159.
${ }^{7}$ C. G. Le Fèvre, R. J. W. Le Fèvre, B. Purnachandra Rao, and A. J. Williams, J. Chem. Soc., 1960, 123.
${ }^{8}$ M. J. Aroney, K. E. Calderbank, R. J. W. Le Fèvre, and R. K. Pierens, J. Chem. Soc. (B), 1968, 561.
${ }^{9}$ C. L. Cheng, I. G. John, G. L. D. Ritchie, and P. H. Gore, J.C.S. Perkin II, 1974, 1318.
for conformations defined by dihedral angles $\phi$ within the range $0^{\circ} \leqslant \phi \leqslant 90^{\circ}$, where $\phi=0^{\circ}$ corresponds to the resonance favoured 'planar' model (except for $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{NH}_{2}$ where $\phi=0^{\circ}$ describes the conformer having the $\mathrm{H} \cdots \mathrm{H}$ line parallel to the aromatic ring plane).

Table 2
Anisotropic polarisabilities of bonds and groups (expressed as $10^{40} b / \mathrm{C} \mathrm{m}^{2} \mathrm{~V}^{-1}$ )

|  | $b_{\mathbf{L}}$ | $b_{\mathbf{T}}$ | $b_{\mathbf{V}}$ | Ref. |
| :--- | ---: | ---: | ---: | ---: |
| $\mathrm{C}_{6} \mathrm{~F}_{5}$ | 11.66 | 12.43 | 5.89 | 5 |
| $\mathrm{C}_{\text {ar }}-\mathrm{CH}_{3}$ | 3.78 | 2.23 | 2.56 | 6 |
| $\mathrm{C}-\mathrm{O}$ | 0.99 | 0.51 | 0.51 | 4 |
| $\mathrm{O}-\mathrm{H}$ | 1.06 | 0.56 | 0.56 | 7 |
| $\mathrm{C}_{a r}-\mathrm{NH}_{2}$ | 4.73 | 1.28 | 1.56 | 8 |
| $\mathrm{C}=\mathrm{O}$ | 2.56 | 1.56 | 0.51 | 4 |
| $\mathrm{C}-\mathrm{C}$ | 1.08 | 0.29 | 0.29 | 9 |
| $\mathrm{C}-\mathrm{H}$ | 0.72 | 0.72 | 0.72 | 9 |
| $\mathrm{C}_{a \mathrm{ar}}-\mathrm{S}$ | 5.27 | 0.67 | 1.18 | 10 |
| $\mathrm{C}-\mathrm{S}$ | 2.09 | 1.88 | 1.88 | 4 |
| $\mathrm{C}-\mathrm{CN}$ | 4.05 | 1.95 | 1.95 | 11 |

Regular angles ( $\mathbf{1 1 0}$ or $120^{\circ}$ ) were assumed about the central atoms of R ; the overall molecular polarisability anisotropy is insensitive to variations in these angles. The ${ }_{\mathrm{m}} K$ (calc.) values can, however, be sensitively dependent on the direction of action of the permanent electric dipole moment within the molecular framework. In each case the location of $\mu$ was obtained by vector analysis on the basis that $\mu$ (observed) for $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}$ is the

[^1]vector sum of $\mu\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{R}\right)^{14-20}$ and a component $\mu^{\prime}$, directed along the 1,4 -axis and into the aromatic ring, which in turn is the sum of the $p-\mathrm{C}_{a r}-\mathrm{F}$ group moment and $\mu$ (interaction), the latter arising mainly from electromeric interactions between the substituent groups. Theoretical ${ }_{\mathrm{m}} K$ values for the conformations $\phi=0$ and $90^{\circ}$ are shown in Table 3. Column 4 of this Table lists the dihedral angles for which agreement between theoretical and experimental ${ }_{\mathrm{m}} K$ values is achieved. In the case of pentafluoro-benzaldehyde and -acetophenone alternative determinations of the electric moment direction were made assuming that $\mu$ (observed) is composed of $\mu$ (pentafluorobenzene) ${ }^{5}$ and a second vector component $\mu^{\prime \prime}$ directed along the $\overrightarrow{\mathrm{C}=\mathrm{O}}$ bond axis. The estimates of ${ }_{\mathrm{m}} K$ (calc.) and $\phi$ shown in Table 3 for each of these two molecules are mean values; the uncertainty in the location of $\mu$ results in $a \pm 4^{\circ}$ error contribution to the overall uncertainty in each $\phi$. Trial calculations were made with the other molecules $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}$ to gauge the effect on $\phi$ of possible $\mu$ locations; this constitutes the major component of the error estimates specified in Table 3. In column 5 of this table are listed for comparison the $\phi$ estimates previously derived for the analogous $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{R}$ molecules. The present results indicate restricted rotation of the $R$ groups in $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}$; the $\phi$ values describe the preferred time-averaged conformations.

Pentafluorophenol and pentafluoroaniline, in common with the non-fluorinated analogues, exist as solutes in the resonance favoured $\phi c a$. 0 forms; such conformers are possibly stabilised in the case of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$ and $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{NH}_{2}$ by hydrogen-bond formation with the 0 -fluoro-groups. With molecules $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}$, where R is $\mathrm{OCH}_{3}, \mathrm{SCH}_{3}$, or $\mathrm{CH}_{2} \mathrm{CN}$, the apparent dihedral angles $\phi$

[^2]are in each case substantially greater than for the corresponding $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{R}$ molecules clearly indicating the greater steric-electrostatic repulsiveness of F over H

TAble 3
Calculated molar Kerr constants and conformations $\phi$ for molecules $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}$

| R | $10^{27}{ }_{\mathrm{m}} \mathrm{K}$ (calc.) $/ \mathrm{m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\phi=0^{\circ}$ | $\phi=90^{\circ}$ | $\phi^{\circ}\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{R}\right)$ | $\phi^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{R}\right)$ |
| OH | 199 | $-59$ | ca. $0^{a}$ | ca. $0^{\text {b }}$ |
| $\mathrm{NH}_{2}$ | 431 | 542 | ca. $0^{*}$ | $0{ }^{\text {c }}$ |
| CHO | 181 | -154 | $28 \pm 6$ | $0{ }^{\text {d }}$ |
| $\mathrm{COCH}_{3}$ | 341 | -269 | $58 \pm 7$ | $0{ }^{\text {d }}$ |
| $\mathrm{OCH}_{3}$ | 185 | 48 | $47 \pm 5$ | ca. 18* |
| $\mathrm{SCH}_{3}$ | 240 | 80 | $64 \pm 5$ | ca. $23{ }^{f}$ |
| $\mathrm{CH}_{2} \mathrm{CN}$ | 512 | -524 | $68 \pm 4$ | ca. $32{ }^{\circ}$ |

${ }^{a}$ The rate of change of ${ }_{m} K$ (calc.) is slow in the range $0-c a$. $12^{\circ}$ so it may be concluded that $\phi$ is zero or near zero (i.e.
 19. ${ }^{g}$ Ref. 20.
with respect to these groups. The deflection of the formyl and acetyl groups away from the aromatic ring plane in $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{CHO}$ and $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{COCH}_{3}$ may be attributed to coulombic repulsions between the highly electronegative oxygen and fluorine atoms, to methyl-fluorine steric repulsions in the case of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{COCH}_{3}$, and to lower resonance energies, relative to the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{R}$ compounds, through inductive drain of $\pi$-electrons by fluorosubstituent groups.

Support from the Australian Research Grants Committee is gratefully acknowledged.
[6/398 Received, 27th February, 1976]
${ }^{19}$ M. J. Aroney, R. J. W. Le Fèvre, R. K. Pierens, and M. G. N. The, J. Chem. Soc. (B), 1971, 1132.
${ }_{20}$ R. J. W. Le Fèvre, B. J. Orr, and G. L. D. Ritchie, J. Chem. Soc., 1965, 3619.
${ }_{21}^{21}$ R. J. W. Le Fèvre and A. J. Williams, J. Chem. Soc., 1960, 1825.
${ }^{22}$ M. J. Aroney, R. J. W. Le Fèvre, R. K. Pierens, and M. G. N. The, J. Chem. Soc. (B), 1969, 666.


[^0]:    ${ }^{3}$ C. G. Le Fèvre and R. J. W. Le Fèvre, 'The Kerr Effect,' in 'Techniques of Chemistry,' ed. A. Weissberger, Wiley-Interscience, New York, 1972, vol. I, part IIIC, ch. VI, p. 399.
    ${ }^{4}$ R. J. W. Le Fèvre, Adv. Phys. Org. Chem., 1965, 3, 1.

[^1]:    ${ }^{10}$ M. J. Aroney, G. M. Hoskins, and R. J. W. Le Fèvre, $J$ Chem. Soc. (B), 1968, 1206
    ${ }^{11}$ R. J. W. Le Fèvre, G. L. D. Ritchie, and P. J. Stiles, $J$ Chem. Soc. (B), 1967, 819.
    ${ }^{12}$ A. I. Vogel, W. T. Cresswell, G. H. Jeffery, and J. Leicester; J. Chem. Soc., 1952, 514.
    ${ }^{13}$ R. J. W. Le Fèvre, B. J. Orr, and G. L. D. Ritchie, J. Chem. Soc., 1965, 2499.
    ${ }_{14}{ }^{\prime}$ M. J. Aroney, R. J. W. Le Fèvre, L. Radom, and G. L. D. Ritchie, J. Chem. Soc. (B), 1968, 507.

[^2]:    ${ }^{15}$ J. B. Bentley, K. B. Everard, R. J. B. Marsden, and L. E. Sutton, J. Chem. Soc., 1949, 2957.
    16 P. H. Gore, P. A. Hopkins, R. J. W. Le Fèvre, L. Radom, and G. L. D. Ritchie, J. Chem. Soc. (B), 1971, 120.
    ${ }_{17}$ E. V. Goode and D. A. Ibbitson, J. Chem. Soc., 1960, 4265.
    ${ }^{18}$ M. J. Aroney, M. G. Corfield, and R. J. W. Le Fèvre, J. Chem. Soc., 1964, 2954.

